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Maroš Čavojský a,*, Martin Drozda a, Zoltán Balogh b 

a Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava, Slovakia 
b Department of Informatics, Constantine the Philosopher University, Nitra, Slovakia   

A R T I C L E  I N F O   

Keywords: 
Needleman-Wunsch algorithm 
GPS (Global positioning system) 
Sequence alignment 
String edit distance 
User trajectory comparison and experimental 
evaluation 

A B S T R A C T   

We evaluate whether the Needleman-Wunsch algorithm is suitable for user trajectory comparison. The problem 
that we aim to solve is pair-wise user trajectory comparison. Similar user trajectories are then clustered with 
respect to their similarity, where clusters emerge in a non-supervised way. 

We assume that user position, provided by GPS (Global positioning system), is normally distributed around 
user actual position. This assumption allows us to derive a model for setting score for match, penalty for gap and 
penalty for mismatch, which are an input to the Needleman-Wunsch algorithm. Our model implies that, in 
scenarios where actual user position is unknown and must be thus estimated from measured positions, the 
Needleman-Wunsch algorithm may be prevented from applying mismatches. In an experimental evaluation, we 
apply two data sets that contain recorded user positions and we show that our approach based on the Needleman- 
Wunsch algorithm is capable of correct classification of user trajectories into groups. Unlike in existing literature, 
we show that in GPS based user trajectory comparison, it is indeed not necessary to consider mismatches when 
applying the Needleman-Wunsch algorithms. This leads to a simplified string editing problem known as Longest 
Common Subsequence (LCS). We compare our approach with Edit Distance on Real sequence (EDR) in order to 
provide an insight into the performance of our approach. 

Applying the Needleman-Wunsch algorithm has helped to solve several problems that emerge in GPS based 
user trajectory comparison such as interrupted GPS service due to satellite occlusion and various signal propa-
gation phenomena such as signal reflection, fading etc. In order to improve the efficiency of the Needleman- 
Wunsch algorithm, we apply Move ability to identify when such detrimental conditions could occur. We also 
apply linear approximation in order to enhance user GPS trajectories with missing points, what further improves 
the efficiency of user trajectory comparison.   

1. Introduction 

Evaluating trajectories of people, animals and/or objects is essential 
for understanding existing and emerging links between spatial and so-
cial structure. Applications of such evaluation range from vehicle nav-
igation to social applications. In their seminal paper on social 
organization of ants, Mersch, Crespi, and Keller (2013) tracked ants 
tagged with a unique bar code and continuously recorded their where-
abouts in ant colony with a high-resolution camera. The ability to track 
ant movement on an individual basis allowed for understanding how 
ants during their lifetime regularly change social groups and migrate to 
different jobs. 

The results by Mersch et al. also show that evaluation of trajectories 

is a task with unexpected instances. Herein, we focus on comparing 
trajectories of people that carry a mobile phone and are thus “tagged” 
with their unique mobile phone identifier. Our ambition is to propose, 
analyze and evaluate an efficient approach that could be applied, for 
example, in scenarios aimed at elucidating whether similar or dissimilar 
trajectories imply changes in social structure. 

When evaluating trajectories for similarity, we assume that we deal 
with a discrete trajectory based on GPS (Global Positioning System) 
coordinates that are measured representations of a user’s real position. 
Čavojský and Drozda (2019) observed that the discrepancy between a 
measured position and a real position can take form of a nest that is a 
result of various phenomena known to influence signal reception such as 
reflection, multi-path propagation or fading. Nests may occur when user 
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E-mail addresses: maros.cavojsky@stuba.sk (M. Čavojský), martin.drozda@stuba.sk (M. Drozda), zbalogh@ukf.sk (Z. Balogh).  

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

https://doi.org/10.1016/j.eswa.2020.114068 
Received 8 May 2020; Received in revised form 25 August 2020; Accepted 27 September 2020   

mailto:maros.cavojsky@stuba.sk
mailto:martin.drozda@stuba.sk
mailto:zbalogh@ukf.sk
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2020.114068
https://doi.org/10.1016/j.eswa.2020.114068
https://doi.org/10.1016/j.eswa.2020.114068
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2020.114068&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Expert Systems With Applications 165 (2021) 114068

2

is in an area where reflected GPS signal dominates. A nest can be viewed 
as a specific form of what is called noise points in Yang, Cai, Yang, Zhang, 
and Zhao (2020). 

Gaps can have similar causes, additionally, they often emerge when a 
GPS device suffers a complete loss of signal, for example, due to satellite 
occlusion. Examples of these two phenomena are shown in Figs. 1(a) and 
(b). In controlled environments, such as the ant nests used by Mersch 
et al. in their experiments, gaps arise when the bar code attached to an 
ant becomes temporarily illegible. 

1.1. Motivation 

The existence of nests and gaps, connected with the reality that only 
estimates of a user’s real position are available, motivates an approach 
for user trajectory comparison with the following properties:  

• It is suitable for discrete user trajectories such as recorded by GPS.  
• It can deal with nests and gaps, and as an extension with realistic 

environments with a high degree of noise, for example, due to 
various signal propagation phenomena.  

• It is computationally feasible for trajectories that may be dominantly 
dissimilar and having significantly different lengths. 

The last property makes the desired approach distinct from ap-
proaches aimed at comparing inherently similar sequences. For 
example, when comparing human DNA sequences it is reasonable to 
expect about 99.4% similarity (1000 Genomes Project Consortium, 
2015), whereas in user trajectory scenarios such a high degree of simi-
larity cannot be expected (unless nearly all users move alongside the 
same trajectory). 

Approaches that are often considered for comparing trajectories 
include Euclidean distance, which may require trajectories of the same 
length with one-to-one correspondence between measured positions 
(Ranacher & Tzavella, 2014); longest common subsequence, which does 
not take into consideration size of gaps between common subsequences 
(Chen, Özsu, & Oria, 2005); nearest neighbor, which often leads to 
counting the number of nearby or identical positions in considered 
trajectories (Yuan & Raubal, 2012); discrete Fréchet distance, which is 
known to be sensitive to outliers (Ahn, Knauer, Scherfenberg, Schlipf, & 
Vigneron, 2010) and Dynamic time warping (DTW), which is aimed at 
cases when one trajectory is stretched or condensed version of the other 
sequence (Yuan & Raubal, 2012) and has therefore many applications in 
audio matching (Hu, Dannenberg, & Tzanetakis, 2003). Other ap-
proaches that are focused on identification of stay points (stop-overs) 
include (Yang et al., 2020), Move Ability (MA) is often used as an in-
dicator to find stay points and noise points (Luo, Zheng, Xu, Fu, & Ren, 
2017). 

In Čavojský and Drozda (2019) the authors suggested that the 
Needleman-Wunsch algorithm (NWA) (Needleman & Wunsch, 1970), 
applied in alignment of DNA, RNA and protein sequences (and sub-
sequences thereof), may also be suitable for user trajectory comparison. 

In bio-informatics, alignment of such sequences is necessary in order to 
argue about whether they could have a common ancestor with gaps 
emerging as a result of various evolutionary, structural and functional 
changes. 

Even though, NWA is still widely used for optimal global alignment, 
several approaches that optimize or supersede NWA were proposed. 
Many of these approaches aim at massively parallel and distributed 
computing environments. To name a few, Chakraborty and Bandyo-
padhyay (2013) proposed a branch and bound approach for global 
pairwise sequence alignment. Vineetha, Biji, and Nair (2019) proposed 
an algorithm that takes advantage of the suffix tree for identifying 
common substrings. This results in improved NWA efficiency. The al-
gorithm was implemented on an Apache Spark data framework in order 
to improve its scalability. 

As the just discussed approaches are aimed at sequences of nucleo-
tides, they do not offer any insights about how to deal with measured 
position sequences such as discussed herein. Additionally, these algo-
rithms were proposed in order to deal with sequences having length of 
tens or even hundreds of millions nucleotides. Needless to say, se-
quences of measured positions applied herein are much shorter, how-
ever, these sequences show a higher degree of noise and dissimilarity. 

1.2. Summary of results 

The results presented herein, that reflect the above formulated goals, 
can be succinctly summarized as follow:  

• We propose how to transform discrete user trajectories provided by 
GPS into a letter-based representation suitable as input to NWA. Such 
a representation requires that interpolated user positions are intro-
duced in order to be able to compare two trajectories. We apply a 
linear interpolation between measured positions which may not be 
powerful enough to explain all user movements, however, we assume 
that users are free to move anywhere, they are not restricted to 
streets and sidewalks. 

• We assume that the user’s measured positions are normally distrib-
uted around the user’s actual positions. We therefore model match 
and mismatch score for NWA as a function of normal distribution. By 
means of experimental evaluation we show that optimal classifica-
tion results can be achieved.  

• We show that it is not necessary to consider mismatches when 
applying NWA to user trajectory evaluation. This is a surprising 
result and it leads to a conclusion that an alignment computed by 
NWA needs to be further evaluated in order to argue about user 
trajectory similarity.  

• NWA is an algorithm specifically designed for indentifying identical 
parts of sequences. In many applications including user trajectory 
comparison, parts of sequences that are dissimilar can provide 
valuable information. We apply Move ability to analyze dissimilar 
parts of sequences, so that nests can be effectively filtered out, two 

Fig. 1. Nest and gap.  
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trajectories that only differ in one or several nests can thus still be 
considered similar. 

When preparing our experiments, we had to manually identify pairs 
of trajectories that were manually compared against a (street) map and 
declared to be either similar or dissimilar. In our experiments, we 
applied two data sets. The first data set is stemming from a separate long 
term experiment, where 455 mobile phones were distributed among 
students (Čavojský & Drozda, 2016). The advantage of this data set is 
that we could use its subset, where geographical positions of students 
were familiar to us and therefore easier to interpret. In order to avoid 
systemic bias, we also applied the Geolife data set by Microsoft Research 
Asia (Zheng, Fu, Xie, Ma, & Li, 2011). This data set recorded trajectories 
of 182 users with an abundance of similar trajectories. 

The rest of this document is organized as follow. In Section 2 we 
discuss the related work. In Section 3 we introduce the Needleman- 
Wunsch algorithm and in Section 4 we discuss how this algorithm can 
be applied in trajectory comparison. In Section 5 we introduce EDR (Edit 
Distance on Real Sequence), an edit distance algorithm that we apply 
when discussing the quality and relevance of our results. In Section 6 we 
formally introduce the problem investigated herein, that is, evaluation 
of trajectory similarity. In Section 7 we introduce the experimental setup 
applied in our experimental evaluation. Section 8 contains the obtained 
results, and finally, in Section 9 we conclude and give suggestions for 
possible future work. 

2. Related work 

Čavojský and Drozda (2019) proposed an approach for comparing 
user trajectories based on NWA. They compared their approach with 
other approaches that are common when comparing user trajectory with 
possible trajectories derived from a street map (Yang, Zhang, Li, & Lian, 
2011):  

• Pairwise method that subsequently compares two positions having 
the same index i from each trajectory. This is only feasible for tra-
jectories with equal length.  

• Proximity method that compares two positions that are closest two 
each other.  

• Upward proximity method that compares two positions that are 
closest to each other and that have not been used in comparisons yet. 
If a position has been already used, then the next position having a 
higher index will be applied. 

They also demonstrated several challenges that need to be addressed, 
more specifically, nests and gaps that arise as a consequence of signal 
propagation effects and applied hardware. 

Naidu and Narayanan (2016) applied NWA for identifying viral 
polymorphic malware variants. In order to apply NWA, they converted 
binary code to a fixed-size alphabet. They reported that they could 
detect several known viral polymorphic malware variants of JS.Cas-
sandra virus and W32.Kitti virus, in some cases, with 100% accuracy. 
They also report that in some cases their approach has failed to deliver 
acceptable results. 

Garhwal and Yan (2019) applied NWA for detecting watermarks in 
images. When encoding images, they first convert image to grayscale 
with 256 levels. Subsequently, they convert grayscale image to Byte64, 
hex format, binary format and finally to an alphabet of size four. For 
testing, they apply a standard image library with and without water-
marks. For some data sets, they reported 100% accuracy. They show that 
watermarking results in areas that are similar to mutated regions in 
nucleotide sequences, hence the applicability of NWA in their scenario. 

Ju, Park, Lim, Yun, and Heo (2018) investigated student smart card 
transactions and calculated similarity scores for finding relationship 
between students’ trajectories and academic performance. They 
collected data for 685 students, computed standard t-tests for several 

groups and concluded that student daily trajectory is statistically sig-
nificant for predicting academic performance. They applied a four-letter 
alphabet, where the letters corresponded to four locations: home, study, 
class and others. 

Chua and Foo (2017) combine a decision tree classifier with NWA in 
order to recognize inhabitant’s activity in a smart home. NWA is applied 
to compare the resulting decision tree models for similarity. They note 
that finding similarity in tree data structures has previously also been 
used for the analysis of XML documents. 

Güyer, Atasoy, and Somyürek (2015) applied NWA to understanding 
navigation paths of users on the World Wide Web. Each web page was 
assigned a unique letter. The authors were comparing the optimal path 
for finding information to student (suboptimal) path. Their goal was 
twofold: (i) understanding the degree of disorientation with which a 
student is confronted and (ii) how disorientation could be mitigated. 

When facing the problem of comparing sequences of eye movement, 
Day (2010) applied a bijective mapping of a small number of objects to 
letters in order to investigate user’s eye fixation sequences. His experi-
ment was realized in the context of a visually driven product selection 
process with applications to decision making. 

Chen et al. introduced a distance function, Edit Distance on Real 
sequence (EDR), which they show is robust against noise, sensor failures 
or disturbance signals (Chen et al., 2005). They compared EDR with 
other approaches, most notably with Dynamic time warping (DTW), and 
conclude that DTW is sensitive to noise and is not suitable for comparing 
user trajectories. 

Toohey and Duckham investigated the suitability of several simi-
larity measures, including EDR and DTW, for comparison of trajectories 
of delivery drivers in the UK (Toohey & Duckham, 2015). Similar to the 
previous study, they also concluded that DTW is sensitive to outliers, 
however, they did not specify to what degree are outliers present in the 
applied data set. 

Zheng gives an overview of trajectory data mining, indexing and 
retrieval, and reports that various filtering approaches such as median 
and mean filters are often applied for filtering outliers, i.e. for reducing 
noise (Zheng, 2015). 

Taking into consideration the above reviewed related work, the 
relative lack of approaches for trajectory comparison that apply edit 
distance, with NWA being their instance, we decided to apply and 
evaluate NWA in settings where recorded user trajectory can be noisy 
due to signal propagation phenomena that lead to the aforementioned 
nests and gaps. 

3. Needleman-Wunsch algorithm (NWA) 

NWA is a prime example of dynamic programming, where by solving 
a series of smaller problems, it is possible to construct a global solution. 
It is also an instance of string editing algorithm, where the goal is to find 
minimum edit distance between two strings, that for example represent 
two sequences of DNA nucleotides:  

Sequence 1: G T C G A C G 
Sequence 2: G A T T A C A  

An alignment for these two nucleotide sequences, when only iden-
tical letters are allowed to match, can be constructed as follows:  

Sequence 1: G – T – – C G A C G 
Sequence 2: G A T T A C – A – –  

In the above example, the letters A (adenine), T (thymine), G (gua-
nine) and C (cytosine) correspond to the four known types of DNA nu-
cleotides, while “–” corresponds to introducing a gap. If we also allowed 
for mismatches, the alignment could be constructed as follows:  

Sequence 1: G – T C G A C G 
Sequence 2: G A T T – A C A  
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Mismatches model mutations, which can occur in DNA replication. A 
mutation can be a result of external conditions such as ultraviolet (UV) 
light, X-rays or various chemicals. 

Unlike in the case of nucleotide sequences, when applying NWA to 
trajectory comparison, we face the additional challenge of applying a 
measured position instead of the user’s real position. The precision of 
any measured position is related to the number of satellites with a fix 
that is influenced by signal propagation effects and available navigation 
data that can be either received from a satellite or over a network data 
connection. Imprecisely measured positions cannot be completely 
filtered out since, in general, we do not know user’s real position. This 
implies that two trajectories, that are identical in reality, may show a 
degree of dissimilarity. 

NWA takes as input two sequences, score matrix and gap penalty. 
The objective is to align these two sequences by matching letters and 
introducing gaps, where score with respect to matched letters and gap 
penalty for introduced gaps is computed. Matching only identical letters 
can be desirable, however, in bio-informatics score is often set according 
to mutation probabilities, where matching certain letters can have a 
higher score than matching other letters. It is also often desirable that 
alignment has few small gaps, therefore penalty for starting a gap can 
also be introduced. 

NWA is a variant of string-editing algorithm, where the objective is 
to maximize alignment scores along the entire length of two sequences. 
Let x1, x2,…, xm and y1, y2,…, yn be two sequences, one having length m 
and the other length n. The scoring schema score defines scores when 
letters match or mismatch, for example in the case of nucleotide 
matching, score(G,G) = 1 and score(G, T) = − 1, respectively. In its 
simplest form, score returns score 1 for identical letters and − 1 for 
different letters including letter to gap mismatch (gap penalty). More 
complex schemes are often considered in order to capture different 
mutation probabilities; see e.g. BLOSUM scoring (Henikoff & Henikoff, 
1992). 

Having a scoring scheme, we can build a matrix M of size (m + 1)×
(n + 1), where each entry M(i, j) represents the score for optimal 
alignment of partial sequences x1,…, xi and y1,…,yj. The matrix M needs 
to be initialized as follows: M(0,0) = 0,M(i,0) = i ∗ gp and M(0, j) =

j ∗ gp, where gp is gap penalty. The remaining entries of M are filled 
recursively: 

M(i, j) = max

⎧
⎨

⎩

M(i − 1, j − 1) + score(i, j),
M(i − 1, j) + score(i, ),

M(i, j − 1) + score
(
, j
)
,

(1)  

where score(i, ) and score( , j) is the gap penalty equal to gp and score(i,
j) is the score of matching or mismatching at i-th and j-th position of 
sequences. In order to compute optimal alignment, we also need to re-
cord which of the three considered cases was applied, i.e. which resulted 
to the maximum value. In the case when identical value gets computed, 
a branching leading to several optimal alignments occurs. 

When computing the optimum alignment we need to backtrack from 
M(m, n) in the direction of recorded choices, where moving up or left 
means introducing a gap and moving on the diagonal means match or 
mismatch. NWA time and space complexity is O(mn), therefore this al-
gorithm is also suitable for computing sequence alignments of consid-
erable length. 

4. Mapping trajectory comparison to NWA 

Since user trajectories consist of recorded positions and not letters, it 
is necessary to define the equivalence of positions. Let ri and sj be two 
recorded positions. ri and sj are equivalent if their mutual distance is less 
or equal ∊: 

⃒
⃒ri − sj

⃒
⃒ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
ri,x − sj,x

)2
+
(
ri,y − sj,y

)2
√

⩽∊,

where ∊ ∈ ℝ≥0, ri,x and sj,x are x-coordinates of ri and sj, respectively, and 
ri,y and sj,y are y-coordinates of ri and sj, respectively. In other words, we 
consider Euclidean distance in two dimensions. A similar approach was 
taken by Chen et al. (2005), however, they applied Manhattan distance. 

We implicitly apply an alphabet {R1,R2,…,Rm} ∪ {S1,S2,…,Sn} ∪ {

X1, X2, …, Xx}, where Ri denotes that the position belongs solely to 
Trajectory R, Sj denotes that the position belongs solely to Trajectory S 
and Xk denotes that the position belongs to both Trajectory R and S. 

Fig. 2(a) shows an example with two intersecting trajectories. NWA 
could compute the following alignment:  

Sequence 1: – – R1  R2  X1  – R3  

Sequence 2: S1  S2  – – X1  S3  –  

Fig. 2(b) shows an example with two non-intersecting trajectories. 
NWA could compute the following alignment:  

Sequence 1: – – – – R1  R2  R3  R4  

Sequence 2: S1  S2  S3  S4  – – – –  

And finally, Fig. 2(c) shows an example with two similar trajectories. 
NWA could compute the following alignment:  

Sequence 1: X1  X2  – R1  X3  

Sequence 2: X1  X2  S1  – X3   

NWA could also compute the following alignment, this time applying 
mismatch instead of gaps:  

Sequence 1: X1  X2  R1  X3  

Sequence 2: X1  X2  S1  X3   

Fig. 2. Examples of simple trajectories.  
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What alignment gets computed depends on the applied score matrix 
and gap penalty. Notice that in the case of two non-intersecting trajec-
tories, the highest number of gaps gets introduced, however, if we set the 
cost for a mismatch low, then the alignment could be dramatically 
different. 

In order to apply NWA we need to set score for matching and mis-
matching, as well as gap penalty gp. As we have already mentioned, 
often a simplistic scheme is applied with match score set to 1, and 
mismatch score and gap penalty set to − 1. More complex schemes were 
proposed for efficient aligning of proteins, for example, BLOSUM scoring 
(Henikoff & Henikoff, 1992). This scoring takes into consideration the 
probabilities with which different proteins can be substituted. To 
calculate BLOSUM matrix, the following approach is applied: 

score(i, j) =
1
λ

log

(
pij

qi⋅qj

)

,

where pij is the probability that two aminoacids replace each other, qi 
and qj is the probability that aminoacid i and j, respectively, can be 
found in any protein sequence, and λ is a scaling factor, so that a suitable 
(rounded) integer values can be obtained. 

The BLOSUM scoring suggests that when applying NWA in user 
trajectories comparison, a similar approach could be considered. The 
results by Heng, Gao, Walter, and Enge (2011) and Tiberius and Borre 
(2000) show that positions measured by GPS are normally distributed 
around user’s actual position. This may depend on user environment, if 
considering an urban environment with buildings and other sources of 
occlusion, one might consider other models based on Rayleigh distri-
bution or Rice distribution (Rappaport, 1996). We herein assume that 
we can model the distance of two positions as: 

ϕ(|ri − sj|) =
1

∊
̅̅̅̅̅
2π

√ e−
1

2∊2 |ri − sj |
2
,

where ri and sj are measured positions of two users with actual position 
rr
i and sr

j , respectively, such that rr
i ≡ sr

j . We set match and mismatch 
score to be inversely proportional to the above equation: 

match = ϕ(|ri − sj|)
− 1

= ϕ(0)− 1
= ∊

̅̅̅̅̅
2π

√
,

mismatch = − ϕ(|ri − sj|)
− 1

= − ∊
̅̅̅̅̅
2π

√
e

1
2∊2 |ri − sj |

2
,

where for match we assume that two positions ri and sj with |ri − sj|⩽∊ are 
equivalent, i.e. we can substitute 0 for |ri − sj|. Since ∊ and 

̅̅̅̅̅̅
2π

√
scale 

match and mismatch proportionally, we can further simplify as well as 
apply the ceiling function: 

match = 1,

mismatch =

⎡

⎢
⎢
⎢
− e

1
2∊2 |ri − sj |

2

⎤

⎥
⎥
⎥
.

The rationale for setting gap penalty gp is that it is less than match, 
otherwise NWA would not align sequences, and equal or larger than 
mismatch, while having in mind that the probability that two positions 
belong to the same trajectory decreases with their relative distance: 

match > gp⩾mismatch.

Given the above said, |ri − sj| > ∊ defines an area, where two positions 
are not equal, with mismatch also depending on ∊: 

match = 1, if
⃒
⃒ri − sj

⃒
⃒⩽∊,

mismatch =

⎡

⎢
⎢
⎢
− e

1
2∊2|ri − sj|

2⎤

⎥
⎥
⎥

⩽ − 1, if
⃒
⃒ri − sj

⃒
⃒ > ∊.

(2) 

This defines how much freedom we have in choosing the various 
parameters, in one case two positions are nearby and we cannot 

distinguish between them due to GPS precision (or rather imprecision), 
in the other case, as their relative distance increases, their “mutation” 
chances decrease, i.e. chances that two distant locations belong to the 
same path decrease. In our experimental analysis, we therefore apply the 
following rule: 

(match = 1) > (gp = 0) > mismatch = { − 1,⋯, − k}, (3)  

where k ∈ Z⩾0. 

4.1. NWA: formal algorithm description 

Let us now formally define the steps described in the previous sec-
tion. Let us assume that we wish to compare two sequences of GPS po-
sitions r = (r0, r1,⋯, rp) and s = (s0, s1, ⋯, sq), where p, q ∈ N. The 
rationale of the algorithm is, each time we apply a position belonging to 
either r or s, we look for the next position in r or s that is at least Δ meters 
further, where Δ⩾2∊. We denote such a position as rΔ and sΔ, respec-
tively. We use ⊕ to denote string concatenation. We assume that rΔ and 
sΔ implicitly define a label Ri and Rj, respectively. This way we build the 
strings R and S that are necessary as inputs to NWA. Unlike in the 
standard version of NWA that computes M(i,0) and M(0, j) before all 
remaining procedures, we compute M(i,0) and M(0, j) when needed. 
This approach implies that only a single pass of r and s is necessary. 

The NWA variant that we apply is shown in Algorithm 1. The time 
complexity of this algorithm is (m + 1)(n + 1)+ max{m, n} = O(mn). 
The sequences r and s require a single pass to convert them to a letter- 
based representation of length m and n, respectively. Each element of 
matrix M is only computed once, what requires (m+1)(n+1) steps, and 
then backtracking is necessary to construct an alignment, what requires 
max{m, n} steps. 

Algorithm 1. (NWA for GPS sequence alignment)  

Require r, s 
R←r0  

S←s0  

initialize M ▹ compute M(0,0),M(1,0),M(0,1)
while r not empty or s not empty  

recursively compute M(i, j) ▹ see Eq. (1)  
if match or mismatch 

R←R ⊕ rΔ  

S←S ⊕ sΔ  

update M(i,0)
update M(0, j)

else ▹ gap is inserted into either R or S  
R←R ⊕ rΔ or S←S ⊕ sΔ  

update M(i,0) or M(0, j)
end if 

end while 
compute alignment of R and S ▹ Backtracking    

5. Edit distance on real sequence 

Edit Distance on Real Sequence (EDR) was introduced by Chen et al. 
(2005) and we apply it as a fair comparison to NWA. Similar to NWA, 
EDR is a string editing approach that compares two sequences by 
computing the number of insertions and deletions (gaps in NWA), and 
substitutions (mismatches in NWA) that need to be applied to one 
sequence in order to become identical with the other sequence. 

Let R and S be trajectories of lengths n and m, respectively. EDR is 
defined as follows: 

EDR(R, S) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n, if m = 0,
m, if n = 0,

min

⎧
⎨

⎩

EDR(Rest(R),Rest(S) ) + cost,
EDR(Rest(R), S ) + 1,
EDR(R,Rest(S) ) + 1, otherwise,
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where Rest(R) is the subtrajectory of R without the first element r1: 

Rest(R) = (r2, r3,⋯, rn),

and cost = 0, if and only if |ri,x − sj,x|⩽∊ and |ri,y − sj,y|⩽∊, and cost = 1 
otherwise. 

Similar to NWA, EDR can be used to compute an alignment of two 
sequences by recording applied choices. Unlike EDR, NWA applies a 
score matrix that can take different probabilities into account, whereas 
EDR only applies fixed costs. If insertion and deletion are not allowed, 
EDR becomes Hamming distance (sequences must have the same 
length). If substitutions are not allowed EDR becomes equivalent to 
Longest Common Subsequence (Navarro, 2001). 

6. Problem formulation 

Let p(match), p(gap) and p(mismatch) be probability with which 
match, mismatch and gap gets applied by NWA, respectively. 

Our goal is to show that if score for mismatch is set according to Eq. 
(2) and ∊ is set to a reasonable (practical) value determined by Android 
horizontal accuracy then we can expect: 

p(mismatch)→0. (4) 

This is caused by assuming in Eq. (2) that for 
⃒
⃒ri − sj

⃒
⃒>∊, we can 

distinguish between two positions, whereas this is not possible 
⃒
⃒ri − sj

⃒
⃒⩽ 

∊ (due to GPS imprecision). This turns our problem to error Type 1 and 
Type 2 trade-off, which is an inherent implication of various signal 
propagation phenomena and GPS accuracy. 

Another related goal is to show that in the case of mismatch score set 
according to Eq. (2), mismatches are not necessary for aligning se-
quences of positions, more specifically, they are not necessary for user 
trajectory comparison. 

The consequence of p(mismatch) being zero or nearing zero is that 
NWA becomes a variant of Longest Common Subsequence. In order to 
evaluate similarity of two sequences, it is necessary to consider their 
structure, rather than relying solely on the number of common positions. 
Therefore in our experimental evaluation, we also consider properties 
such as the number of subsequent gaps applied by NWA while aligning 
sequences. 

In the light of the above said, when evaluating two trajectories on 
similarity, we define their similarity in terms of the number of identical 
positions and the number of subsequent gaps applied by NWA: 

Definition 1. Trajectories R and S having length n and m, respectively, 
are similar, if the following holds: 

#match
max{m, n}

⩾α,

max gap⩽β,

where #match is the number of matches, max gap is the maximum 
number of subsequent gaps, both as computed by NWA for the two 
considered trajectories, α ∈ R|0.0⩽α⩽1.0 and β ∈ Z+. 

Our evaluation of trajectory similarity is thus solely based on the 
number of matches and the number of gaps, what is sufficient when 
mismatches are impossible or improbable. What values the parameters α 
and β should take depends on the considered scenario. Herein we aim at 
trajectory similarity, therefore we consider values such as {0.75,0.85}
for α and {3,5, 10} for β. Leaving β unbounded could be considered in 
scenarios where the goal is to detect nests (and stopovers in general) that 
are followed by a trajectory shared by several users. 

In order to obtain comparable results, we evaluate both NWA and 
EDR applying the above equations. Sellers showed that approaches 
formulated in terms of maximizing similarity (NWA) and minimizing 
edit distance (EDR) are equivalent (Sellers, 1974). For that reason, we 
assume that they can be evaluated in the same way. 

7. Experimental Setup 

7.1. User position information 

To define a movement of device (user), it is necessary to determine 
its position at any point. We define user GPS position and trajectory as 
follows: 

Definition 2. Position P is a couple (x,y):  

• x is latitude in decimal degrees (e.g. 48.1518568),  
• y is longitude in decimal degrees (e.g. 17.0711559). 

Definition 3. User trajectory r is a sequence of (GPS) positions [(P0, t0),
(P1, t1),⋯,

(
Pp, tp

)
],where ti is the time when position Pi was recorded and 

p is the length of trajectory r. 

Alongside device (user) position, other information such as hori-
zontal position accuracy may be useful. According to the Android 
documentation (Google, 2020), horizontal accuracy A is defined as a 
radius with 68% reliability. In other words, if we draw a circle with 
radius A and center P, there is 68% probability (one standard deviation) 
that the actual position is inside of this circle. 

7.2. Interpolation of trajectories 

Let us consider the example depicted in Fig. 3(a). It shows two tra-
jectories r and s that are identical, however, s has missing positions 
between Ss and Se. A similar example is depicted in Fig. 3(c), however, 
this time s and r are not identical, even though as in the previous 
example they share positions Rs, Ss and Re, Se. The cases depicted in 
Figs. 3(a) and (c) could lead to the same alignment. 

The difference between r and s can be explained in our case by 
applying a linear interpolation by which new nodes are added at dis-
tance ∊ on the line connecting Rs, Ss and Re,Se. This is depicted in Figs. 3 
(b) and (d), it demonstrates that by applying linear interpolation, the 
two considered trajectories depicted in Figs. 3(a) and (c) become 
distinguishable for NWA. 

Applying linear interpolation does not mean that gaps will not be 
applied by NWA. A linear interpolation may not be powerful enough to 
explain all user movement, matching user movement to a street map 
could provide a more accurate interpolation, however, we herein as-
sume that users are free to move anywhere and thus they are not 
restricted to streets and sidewalks. An example of originally recorded 
and interpolated trajectory is depicted in Figs. 4(a) and 4(b), 
respectively. 

Other than interpolation, we did not apply any preprocessing in 
order to make data sets more suitable for analysis. 

7.3. Data sets 

The evaluation of our approach to sequence alignment is based on 
data sets that record user movement. We considered two data sets:  

• The COhave data set was collected using 455 mobile devices 
distributed among students. It was collected during a 10-month 
period starting from September 2016 to July 2017. Over 20 million 
position records provide insights into students’ behavior patterns 
(bars, restaurants, clubs etc.). Recording of positions was done using 
our implemented mobile application for energy efficient trajectory 
recording of mobile devices using WiFi scanning, described in more 
details in Čavojský and Drozda (2016) and Čavojský, Uhlar, Ivanis, 
Molnar, and Drozda (2018).  

• The Geolife data set (Microsoft Research Asia) was collected by 182 
users in a period of over three years (from April 2007 to August 
2012). This data set contains 17,621 trajectories with a total distance 
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of about 1.2 million kilometers and a total duration of 48,000 +
hours. These trajectories were recorded by different GPS loggers and 
GPS capable phones, and have a variety of sampling rates. This data 
set recorded a broad range of users’ outdoor movements, including 
not only life routines like go home and go to work but also some 
entertainment and sports activities, such as shopping, sightseeing, 
dining, hiking, and cycling (Zheng, Li, Chen, Xie, & Ma, 2008; Zheng, 
Zhang, Xie, & Ma, 2009; Zheng, Xie, & Ma, 2010). 

These data sets contain user position information: unique user 
identifier, position, time when position is recorded and, if available, 

horizontal accuracy. 
Tables 1 and 2 show the number of groups for the COhave and 

Geolife data set, respectively, each group containing a certain number of 
similar trajectories. Their similarity was evaluated by matching trajec-
tories with a street map. 

7.4. Move ability 

Move ability is a concept introduced in Luo et al. (2017). Its purpose 
is to detect noisy areas in a GPS position sequence. It is based on 
comparing the Euclidean distance of its end points and the sum of 

Fig. 3. Interpolated trajectory.  

Fig. 4. Applying linear interpolation.  
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distances of each successive pair of GPS positions. 

Definition 4. Let r = (r0, r1,⋯, rp) be a sequence of GPS positions. 
Move ability MA is then computed as: 

MA =
|r0 − rp|

∑p− 1

i=0
|ri − ri+1|

,

where p ∈ Z+. As this definition implies, the value of MA is smaller 
for sequences that are less direct, with some sideway movement, if 
compared to a straight line drawn between start and end position. The 
value 1.0 means that the sequence r represents a straight line. In our 
experiments, we assume that r0 ∕= rp, i.e. user subtrajectory does not 
form a cycle, where |r0 − rp| = 0. In order to avoid |r0 − rp| ≈ 0, if 
|r0 − rp| < ∊, we set the distance of r0 and rp to min(∊,

∑p− 1
i=0 |ri − ri+1|). 

As per results presented in Luo et al. (2017), we chose to apply the 
value 0.5 as the threshold for deciding whether a subsequence could 
form a nest:  

• MA ∈ (0.0,0.5] means that the subsequence is a nest,  
• MA ∈ (0.5,1.0] means that the subsequence is not a nest. 

We apply move ability as post-processing. For a subtrajectory, where 
NWA yields one or more gaps as a result, we compute its move ability. 
We thus try to estimate whether the gaps in this subtrajectory are caused 
by a nest (noise). If we confirm that the subtrajectory could represent a 
nest, we exclude this subtrajectory when computing similarity as 
defined in Eq. (1). More specifically, we do not add these gaps when 
computing max gap. We report experimental results for both move 
ability applied and not applied. 

Fig. 5(a) shows an example of two trajectories without move ability 
being applied. These two trajectories would be evaluated as not similar 
because the three nests lead to a large number of gaps being introduced 
by NWA and thus violating the threshold set by parameter β in Def. 1. 
Fig. 5(b) shows the same two trajectories with move ability applied. In 
this case, these two trajectories can still be evaluated as similar. 

In Yang et al. (2020) the authors suggested that any trajectory T 
consists of either move points MP, stay points SP or noise points NP. The 
difference between SP and MP is that the activity behind SP can be 
interpreted as “place visit”, whereas NP can be a result of various 
detrimental conditions such as satellite occlusion etc. They further 
suggested that an efficient approach to compute NP is to compute move 
points and stay points, where NP is the complement, i.e. NP =

T⧹(MP ∪ SP), where MP ∩ SP ∩ NP = ∅. 
When applying NWA, we can assume that matches correspond to 

move points and gaps correspond to either disjoint trajectories, stay 
points or noise points. Move ability allows for distinguishing among 
these three cases, where disjoint trajectories and stay points are ex-
pected to have a high MA and nests (noise points) are expected to have a 
low MA. As NWA is an algorithm specifically designed for alignment 
computation, it offers an efficient way for finding similar parts of tra-
jectories, dissimilar segments of trajectories need to be further analyzed 
with other tools, which may be application (or even scenario) specific. 
We therefore investigate whether MA is a suitable tool for analyzing 
dissimilar parts of trajectories, so that noise points (nests) can be filtered 
out. 

8. Experimental Evaluation 

The objectives of our experimental evaluation can be summarized as 
follow:  

• Experimental verification that Eq. (4) holds for a range of ∊ values, 
while also considering several possibilities for the values of match, 
gap and mismatch, with focus on values that comply with Eq. (4), 

Table 1 
COhave: the number of groups and 
trajectories.  

Group #trajectory 

1 23 
2 13 
3 4 
4 7 
5 2 
6 20  
∑

69  

Table 2 
Geolife: the number of groups and trajectories.  

Group #trajectory 

1 118 
2 26 
3 13 
4 269 
5 24 
6 8 
7 1 
8 1  
∑

460  

Fig. 5. Nest detection with move ability.  
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• we can achieve a reasonable classification accuracy of NWA when 
applied to COhave and Geolife data sets, and that 

• Move ability is further capable of improving the classification ac-
curacy of results obtained with NWA. 

We view the above objectives as necessary to show that NWA is a 
viable solution for user trajectory classification, especially since this 
algorithm has only been for this purpose previously evaluated in 
Čavojský and Drozda (2019). 

8.1. NWA parameters 

The parameters for NWA are set so that values of match, gap and 
mismatch follow the criteria set in Eqs. (2) and (3). In order to explore the 
parameter space, we contrast these value with several other possibilities. 

The distance parameter ∊ was set to {2,5, 10,15,20,50,80,100,
150} meters. The similarity parameter α was set to {0.75,0.85} and the 
similarity parameter β was set to {3,5,10}; see Def. 1. 

8.2. Experimental results 

In order to group user trajectories by similarity, we apply an 
approach similar to X-means clustering. A trajectory is either similar to a 
trajectory already assigned to a group, or this trajectory starts a new 
group. Tables 1 and 2 show that the number of groups in the COhave and 
the Geolife set is 6 and 8, respectively. 

Fig. 6(a) and (b) provide visual help on how trajectories get 
compared. Fig. 6(a) shows two trajectories that get interpolated, so that 
NWA can get applied, and Fig. 6(b) shows the same two trajectories after 
NWA computed an alignment, where green color indicates matches, i.e. 
in those parts these two trajectories are identical. 

Tables 3 and 4 show the classification results for NWA and EDR, for 
the Geolife and COhave data sets, respectively. The optimum result is 
shown with ∗. The tables show that indeed when applying Eqs. (2) and 
(3), the optimum classification result can be achieved, for the both 
considered data sets. Other values for NWA parameters could not deliver 
optimum classification results. 

Tables 3 and 4 also show that the classification results for NWA and 
EDR, when Move ability is applied. We can see that computing Move 
ability helps improve classification performance for lower ∊ values, 
however, it dominates only in one case. 

The tables also show that EDR performs better on the Geolife data set 
than on the COhave data set. EDR however perform worse than NWA 
with parameters set according to Eqs. (2) and (3). 

The best classification results are obtained by setting ∊ to 50 meters. 
The horizontal accuracy of GPS devices, as estimated by Android OS, 
captured in the COhave data set is 10.37 ± 8.02 meter. The Geolife data 
set does not include information about horizontal accuracy. For two 
identical GPS positions this may mean that their real positions are 2 ×

18.39 = 36.78 meters apart, what suggests why ∊ = 20 meters delivers 
worse results than ∊ = 50 meters, and why a further increase of ∊ is not 
helpful. 

Table 5 shows for a very broad range of ∊ values that we can indeed 
expect Eq. (4) to hold. We applied two alternatives for (match, gap,
mismatch) values, (1, 0, − 1), which comply with Eqs. (2) and (3), and 
(1, − 1,0), which do not. We can observe that in the former case the 

Fig. 6. NWA: example.  

Table 3 
NWA vs. EDR: classification results on COhave dataset. * indicates correct 
classification. α = 0.75 and β = 3. (MA) indicates results with Move ability.   

∊ [m]   

20 50 80 100 150 

NWA: match / gap / mismatch  
1/ 0/ − 1 27 6*  5 5 5 

1/ 0/ − 1 (MA) 11 8 5 5 5 
1/ 0/ − 10 27 6*  5 5 5 

1/ 0/ − 10 (MA) 11 8 5 5 5 
1/ 0/ 0 27 5 5 5 5 

1/ 0/ 0 (MA) 11 7 5 5 5 
1/ − 4/ − 6 27 5 5 5 5 

1/ − 4/ − 6 (MA) 11 7 5 5 5 
10/ 5/ 0 55 9 7 5 5 

10/ 5/ 0 (MA) 34 13 9 5 5 
1/ 0/ Eq. (2) 27 6*  5 5 5 

1/ 0/ Eq. (2) (MA) 11 7 5 5 5  

EDR 27 5 5 5 5  

Table 4 
NWA vs. EDR: classification results on Geolife dataset. * indicates correct clas-
sification. α = 0.75 and β = 3. (MA) indicates results with Move ability.   

∊ [m]   

20 50 80 100 150 

NWA: match / gap / mismatch  
1/ 0/ − 1 81 8*  5 5 6 

1/ 0/ − 1 (MA) 26 9 5 5 6 
1/ 0/ − 10 81 8*  5 5 6 

1/ 0/ − 10 (MA) 26 9 5 5 6 
1/ 0/ 0 60 7 5 5 6 

1/ 0/ 0 (MA) 19 8*  5 5 6 
1/ − 4/ − 6 60 7 5 5 6 

1/ − 4/ − 6 (MA) 19 8*  5 5 6 
10/ 5/ 0 130 8*  5 5 6 

10/ 5/ 0 (MA) 42 10 5 5 6 
1/ 0/ Eq. (2) 81 8*  5 5 6 

1/ 0/ Eq. (2) (MA) 26 9 5 5 6  

EDR 62 8*  5 5 5  
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number of applied mismatches is 0, whereas in the latter case mis-
matches get applied. Even in the case of equal classification accuracy, 
we would prefer the former option as evaluation of similarity does not 
depend on an additional variable. 

Tables 6 and 7 show for a larger range of (match, gap,mismatch) that, 
as formulated in Eq. (4), when applying NWA, mismatches are not 
necessary to obtain the optimum classification result for the two studied 
data sets. 

9. Conclusion 

We model match and mismatch score for NWA as a function of 
normal distribution and we show by means of experimental evaluation 
that optimal classification results can be achieved. Furthermore, we 
show that mismatches are not necessary in order to achieve optimum 
classification result. Instead, we show that only gaps (indels) are 
necessary. This basically leads to evaluating trajectories on basis of 
Longest Common Subsequence, even though, we apply some filtering in 
the form of low pass filter for consecutive gaps. 

Not having to consider mismatches is a somewhat surprising result as 
it is often argued that longest common subsequence leads to inferior 
results (Chen et al., 2005). Our results indicate that longest common 
subsequence may lead to acceptable results, when gap length gets 
considered in evaluation. 

Another surprising finding is that literature, wherein various string 
editing algorithms are applied, does not report whether gaps or mis-
matches are necessary for their particular problem; see for example 
(Chen et al., 2005; Zheng, 2015; Cleasby et al., 2019). Instead the results 
are reported in aggregated form, without any possibility to derive the 
number of applied gaps or mismatches. 

Our conclusions are inline with Chen et al. (2005), wherein the au-
thors state: “Longest common subsequence can handle trajectories with 
noise, but it is a very “coarse” measure, as it does not differentiate trajec-
tories with similar common subsequences but different sizes of gaps in be-
tween.” Our results show, however, that adding the possibility of 
mismatches (substitutions), which are for example applied in their EDR, 
does not alleviate the problem. Instead, it is necessary to further eval-
uate the results obtained with NWA without mismatches. 

The challenges that we overcome, when applying NWA to user tra-
jectory comparison, include challenges connected with evaluation of 
gaps (interrupted GPS service) and nests. We adopted the approach 
presented in Yang et al. (2020), where the authors assume that a tra-
jectory consists of either move points, stay points or noise points (for 
example nests). NWA is an algorithm that is specifically designed for 
identifying similar parts of sequences, in our case its output is either a 
match or a gap. We herein assume that matches can be mapped to move 
points, leaving gaps for further analysis. We apply Move ability to 
analyze gaps, what could lead to an improved classification 

performance, as nests get effectively filtered out. We show however that 
our NWA approach enhanced with Move ability does not deliver 
significantly better results, even though, we observe some improvement 
for lower ∊ values. 

Yet another challenge that we overcome is how to translate se-
quences of GPS positions to a letter-based representation that is an input 
to NWA. Missing GPS positions could lead to an outcome where NWA 
computes an identical alignment for two distinct trajectories. For this 
reason, we apply linear approximation of missing trajectory parts 
whenever possible. 

The impact of our results can be summarized as follow. We apply 
NWA for user trajectory comparison, what has only received a limited 
interest from the research community. We analyze NWA efficiency when 
GPS user positions are normally distributed around user’s actual posi-
tion. This allows us to derive parameters that allow NWA to achieve 
optimal classification performance. We apply experimental evaluation 
based on two distinct data sets, COhave and Geolife, in order to provide 
support that NWA is suitable for user trajectory comparison. We explore 
the parameter space of our NWA approach, so that a more complex 
image about its performance is available. As NWA is a widely applied 
algorithm for global sequence alignment, it can be combined with other 
approaches, for example, TAD (Yang et al., 2020), which offer more 

Table 5 
NWA, Geolife: #match, #gap and #mismatch is the number of matches, the 
number of gaps and the number of mismatches, respectively.  

match, gap, mismatch  ∊ [m]  #match  #gap  #mismatch  

1, 0, − 1 2 137 1289 0 
1, 0, − 1 5 115 367 0 
1, 0, − 1 10 79 133 0 
1, 0, − 1 15 75 35 0 
1, 0, − 1 20 65 7 0 
1, 0, − 1 50 25 2 0 
1, 0, − 1 100 11 2 0 
1, − 1, 0 2 130 65 619 
1, − 1, 0 5 115 31 168 
1, − 1, 0 10 79 13 60 
1, − 1, 0 15 75 3 16 
1, − 1, 0 20 65 5 1 
1, − 1, 0 50 25 2 0 
1, − 1, 0 100 11 2 0  

Table 6 
NWA, COhave: #match, #gap and #mismatch is the number of matches, the 
number of gaps and the number of mismatches, respectively.  

match, gap, mismatch  ∊ [m]  #match  #gap  #mismatch  

1, 0, − 1 20 147990 614451 0 
1, 0, − 1 50 64318 214833 0 
1, 0, − 1 80 40068 123280 0 
1, 0, − 1 100 31968 94807 0 
1, 0, − 1 150 21074 55625 0 
1, 0, − 10 20 147990 614451 0 
1, 0, − 10 50 64318 214833 0 
1, 0, − 10 80 40068 123280 0 
1, 0, − 10 100 31968 94807 0 
1, 0, − 10 150 21074 55625 0 
1, 0, 0 20 147990 196954 213349 
1, 0, 0 50 64318 49992 84566 
1, 0, 0 80 40068 34040 46550 
1, 0, 0 100 31968 24220 37204 
1, 0, 0 150 21074 11798 23673 
1, − 4, − 6 20 146708 101600 262308 
1, − 4, − 6 50 63826 38232 90938 
1, − 4, − 6 80 39546 22116 53034 
1, − 4, − 6 100 31546 16824 41324 
1, − 4, − 6 150 21074 11788 23678 
1, − 1, 1 20 412462 94708 0 
1, − 1, 1 50 155398 36964 0 
1, − 1, 1 80 92678 21920 0 
1, − 1, 1 100 73174 16216 0 
1, − 1, 1 150 45294 10704 0 
4, 3, − 1 20 0 914871 0 
4, 3, − 1 50 0 342999 0 
4, 3, − 1 80 0 202515 0 
4, 3, − 1 100 0 157803 0 
4, 3, − 1 150 0 96531 0 
− 1, 0, 1 20 0 96027 411769 
− 1, 0, 1 50 0 39796 153945 
− 1, 0, 1 80 0 24924 91169 
− 1, 0, 1 100 0 19233 71613 
− 1, 0, 1 150 0 14275 43497 
10, 5, 0 20 28455 858272 0 
10, 5, 0 50 30867 281985 0 
10, 5, 0 80 22020 159441 0 
10, 5, 0 100 17912 122917 0 
10, 5, 0 150 16109 65835 0 
1, 0, Eq. (2) 20 147990 614451 0 
1, 0, Eq. (2) 50 64318 214833 0 
1, 0, Eq. (2) 80 40068 123280 0 
1, 0, Eq. (2) 100 31968 94807 0 
1, 0, Eq. (2) 150 21074 55625 0  
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insight on how dissimilar parts of sequences can be evaluated. We expect 
that when dissimilar parts of sequences get evaluated, user trajectory 
comparison can be further improved. 

Our future research directions include a tight integration of our NWA 
approach with approaches that aim at identification of stay and noise 
points such as TAD (Yang et al., 2020). We hope, this could bridge our 
NWA approach with approaches that are more efficient in identifying 
areas where user subtrajectories show a high degree of dissimilarity. We 
will evaluate whether such an integration does not increase computa-
tional cost to a level that impedes our central goal – efficient user tra-
jectory comparison and clustering. 

Among our other future efforts, we would like to mention our 
ambition to analyze spatial activity of rodents that got tracked using 
RFID (Radio-frequency identification) technology; see Balogh, Bízik, 
Turčáni, and Koprda (2016) and Balogh and Baláž (2020). The rodents 
were chipped using PIT (passive integrated transponder) chips. Several 
RFID monitoring stations were deployed to detect rodent presence. By 
analyzing collected data we hope to be able to elucidate how rodents 
interact with their environment, possibly to provide similar insights on 
their social structure as reported by Mersch et al. (2013) in their 
investigation focused on ants. 
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